An efficient Linear Algorithm for Paired-domination Numbers of Trees
نویسنده
چکیده
The paired-domination was introduced by Haynes and Slater in 1995 as a model for assigning backups to guards for security proposes, and it was shown that the problem on general graphs is NP-complete. In 2003, Qiao et al gave a linear algorithm for obtaining the paired-domination numbers of trees based on the paired-domination numbers of paths. The advantage of taking paths into consideration is because the paired-domination numbers of paths could be obtained O(1) time according to their lengths; however, in their algorithm, there involves a complicated step to break a tree in a collection of paths. In this paper, we propose another algorithm in which the complicated step can be avoided. We also give the experimental results to compare the two algorithms.
منابع مشابه
On trees attaining an upper bound on the total domination number
A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. The total domination number of a graph $G$, denoted by $gamma_t(G)$, is~the minimum cardinality of a total dominating set of $G$. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004), 6...
متن کاملOn trees with equal Roman domination and outer-independent Roman domination numbers
A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...
متن کاملA characterization of trees with equal Roman 2-domination and Roman domination numbers
Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...
متن کاملA characterization of trees with equal total domination and paired-domination numbers
Let G = (V,E) be a graph without isolated vertices. A set S ⊆ V is a total dominating set if every vertex in V is adjacent to at least one vertex in S. A total dominating set S ⊆ V is a paired-dominating set if the induced subgraph G[S] has at least one perfect matching. The paired-domination number γpr(G) is the minimum cardinality of a paired-domination set of G. In this paper, we provide a c...
متن کاملTotal and Paired-domination Numbers of a Tree
A set S of vertices is a total dominating set of a graph G if every vertex of G is adjacent to some vertex in S . A paired-dominating set of G is a dominating set whose induced subgraph has a perfect matching. The minimum cardinality of a total dominating set (respectively, a paired-dominating set) is the total domination number γt(G) (respectively, the paired-domination number γpr(G) ). We giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010